Joining tables

Jaroslav Poruban, Miroslav Binas,
Milan Nosal (c) 2011 - 2016

Introduction

e Normalization process tears the database
into multiple tables related using foreign
keys

e SQL provides means to join the tables back
o Using same values in a specified columns

e Join types:
0 CROSS JOIN
0 INNER JOIN ON
ONATURAL JOIN
O INNER JOIN USING (attrs)
OLEFT|RIGHT|FULL OUTER JOIN

Cartesian product

e Cartesian product of set Aand set Bis a
set of all ordered pairs (a,b), where item a
belongs to set A and item b belongs to set B
o Combination of each item from A with

each item from B

e The number of all ordered pairs is defined
as a product of set A size and set B size:
Al.[B]

CROSS JOIN -
Cartesian product

e CROSS JOIN in SQL represents cartesian
product
o No filtering, each item combined with
each item from other table
e syntax:
o Explicit notation
SELECT *
FROM tabl
CROSS JOIN tab2;
o Implicit notation
SELECT *
FROM tabl, tabZ;

Example — employees and

departments

e [ables contents

Employee Table

Department Table

LastName DepartmentlD DepartmentlD DepartmentName

Rafferty

Jones

Steinberg |

Robinson

Smith
John

3
33
33
34
34

31
33
34
35

Sales
Engineering
Clerical

Marketing

CROSS JOIN - Example

SELECT *
FROM employee
CROSS JOIN department;

Rafferty 3 Sales 3
Jones | 33 Sales | 31
Steinberg | 33 Sales | 31
Smith | 34 | Sales | 31
Robinson | 34 Sales | 31
John | == Sales | 31
Rafferty il K} - Engineering | 33
Jones | 33 Engineering | 33
Steinberg | 33 | Engineering | 33
Smith | I | Engineering | 33
Robinson | 34 Engineering | 33

IS - T el e e

INNER JOIN

e Most common JOIN
e Combination of tuples from two tables that
fulfil joining condition
o Usually tests equality of primary key and
foreign key (representing relationship)
e syntax:
o explicit
SELECT * FROM tabl INNER JOIN
tabZ2 ON condition;
o Implicit (CROSS JOIN + WHERE)
SELECT * FROM tabl, tabZ WHERE
condition;

INNER JOIN - Example

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

SELECT *
FROM employee e, department d
WHERE e.departmentid=

d.departmentid;
-Employee.Lasﬂnla me “Emplnyee.ﬂepanme ntlD “De partment.DepartmentName “l}epa rtment.Departme m![.'.l.
| Robinson | 34 | Clerical - 34 |
Jones 33 Engineernng 33
Smith | & | Clerical ' 34
Steinberg 33 Engineering 33

Rafferty ' 31 Sales 31

NATURAL JOIN

e Joins tuples from two tables that have the
same values in columns with same name
(expects that the two tables have columns
with the same name)

o Not recommended to use (implicit joining
condition)

e syntax:
SELECT *
FROM tabl NATURAL JOIN tab2;

NATURAL JOIN - Priklad

SELECT * FROM emplovyee e
NATURAL JOIN department d;

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

.Employee.Lasﬂnlame “Emplnyee.ﬂepanmentl[} “Depanment.[!-eparunenﬂulame Department.DepartmentlD
| Robinson | 4 | Clerical 34
Jones 33 Engineering 33
Smith | 1 | Clerical 34
Steinberg 33 Engineering 33
Rafferty ' 31 ' Sales 31

NATURAL JOIN - Example

SELECT * FROM emplovyee e
NATURAL JOIN department d;

.Empluyee.Lasﬂnlame Employee.DepartmentlD Department.DepartmentName

Robinson 4 Clerical
Jones 33 Engineering
Smith | 1 | Clerical

Steinberg | 33 | Engineering

Rafferty ' 31 Sales

INNER JOIN USING (attrs)

e Explicit alternative for natural join

e Joins tables using same values in columns
with same names that have to be explicitly
specified (list of columns)

e example:
SELECT *
FROM tabl INNER JOIN tabZ
USING (departmentid) ;

INNER JOIN USING - Example

SELECT * FROM emplovyee e
INNER JOIN department d
USING (departmentid) ;

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

'Empluyee.LastHame Employee.DepartmentlD Department.DepartmentName

Robinson 34 Clerical
Jones 33 Engineering
Smith | e | Clerical

Steinberg 33 Engineering

Rafferty ' 31 Sales

OUTER JOIN

e Used to include also those tuples that do
not fulfil joining condition (tuples without a
pairing tuple from other table)

o Left and right joins specify the table, from
which all the tuples should be included

e [ypes

O FULL OUTER JOIN

o Partial outer joins
mLEFT OUTER JOIN
ERIGHT OUTER JOIN

e Allows using NATURAL and USING as an
alternative to ON condition

LEFT (OUTER) JOIN

e Result always contains all tuples from the
table on the left side of join
o Each row from the left table is at least
once in the result
e Missing values for the pair tuple from right
table are replaced with NULL values
e syntax:

SELECT *
FROM tabl
LEFT OUTER JOIN tab2?2 ON cond;

LEFT (OUTER) JOIN - Example

SELECT *
FROM employee e
LEFT OUTER JOIN department d
ON e.DepartmentlID =
d.DepartmentID;

Employee.LastName Employee.DepartmentlD Depanment.[iepamnenmame;Deparunent.[}epartmentl[l

Jones 33 Engineering _ 33

Raffety | 31 Sales 3

Robinson 34 Clerical 34

John does not | Smith | M4 | Clerical 34
zz\ézr?ment, John — . L | Lz
but we still Steinberg 33 Engineering 33

want him in the
result

LEFT (OUTER) JOIN -
alternative notation

SELECT *
FROM employee e
LEFT OUTER JOIN department d
ON e.DepartmentlID =
d.DepartmentID;

SELECT *
FROM employee e
LEFT JOIN department d
ON e.DepartmentlID =
d.DepartmentID;

RIGHT (OUTER) JOIN

e Result always contains all tuples from the
table on the right side of join
o Each row from the right table is at least

once in the result

e Missing values for the pair tuple from left
table are replaced with NULL values

e syntax:
SELECT * FROM tabl
RIGHT OUTER JOIN tab2 ON podm;

e In practice usually only left join is used (in
Oracle left join is more efficient, in SQL.ite
right join is not implemented at all)

RIGHT (OUTER) JOIN -
Example

SELECT *
FROM employee e
RIGHT JOIN department d
ON e.DepartmentlID =
d.DepartmentID;

Employee.LastName Employee.DepartmentlD Department.DepartmentName Department.DepartmentlD

Smith 34 Clerical 34

Jones 33 | Enginesring ' 33

Robinson 34 | Clerical 34

Steinberg 33 | Engineering - 33

Marketing nema Rafferty - 31 | Sales - 31
pretrrcide | m | m %

vSetky oddelenia

FULL (OUTER) JOIN

e Result is a union of left and right outer join
o Result contains all tuples from left table
and all tuples from right table, each at
least once
o Those without a pair are complemented
with NULL values
e syntax:
SELECT *
FROM tabl
FULL OUTER JOIN tabZ ON cond;

FULL (OUTER) JOIN - Example

SELECT *
FROM employee e
FULL OUTER JOIN department d
ON e.DepartmentlID =
d.DepartmentID;

Employee.LastName Employee.DepartmentlD Department.DepartmentName Department.DepartmentiD

Smith 34 Clencal 34

Jones | 33 Engineering | 33
Robinson | 34 | Clencal | 34

John == = | wULL
Steinberg | 33 Engineering | 33

Rafferty 1 | Sales | 31

= £33 Marketing 35

ON versus WHERE

® ON
o Defines joining condition
o Evaluated before (during) the joining
e WHERE
o Defines filtering condition
o Evaluated after the joining result is
created
e Selection of placement of a condition
(whether ON or WHERE) can affect
SELECT's semantics

ON versus WHERE - Example

e Joined departments with their employees
and filtered only those without an employee

SELECT *
FROM employee e
RIGHT JOIN department d
ON e.DepartmentID =
d.DepartmentID
WHERE e.lastName IS NULL;

Employee.LastName Emplnyee.[}epnmnentlﬂ.[}epnmnent.[}epartmentﬂnme Department.DepartmentlD

SULL =3 Marketing 35

ON versus WHERE - Example

e The null test is donu during the joining (no
pair has the lastname with null value)
SELECT *
FROM employee e
RIGHT JOIN department d
ON e.DepartmentID =
d.DepartmentID
AND e.lastName IS NULL;

Employee.LastName Employee.DepartmentlD Department.DepartmentName Department.DepartmentlD

= =3 Sales 31
=3 == Engineering 33
== == | Clerical 4
=3 Marketing 35

Joining

e Order of

properties

tables in join can affect

evaluation speed
e Left and right outer join are not
commutative

o (A left j

e All outer

-

o (A left j

£

oin B) # (B left join A)
oins are not associative
oin B) left join C

A left join (B left join C)

Questions?

