
Joining tables

Jaroslav Porubän, Miroslav Biňas,
Milan Nosáľ (c) 2011 - 2016

www.cde.sk

●Normalization process tears the database
into multiple tables related using foreign
keys

●SQL provides means to join the tables back
○Using same values in a specified columns

●Join types:
○CROSS JOIN
○INNER JOIN ON
○NATURAL JOIN
○INNER JOIN USING(attrs)
○LEFT|RIGHT|FULL OUTER JOIN

Introduction

www.cde.sk

Cartesian product

●Cartesian product of set A and set B is a
set of all ordered pairs (a,b), where item a
belongs to set A and item b belongs to set B
○ Combination of each item from A with

each item from B
●The number of all ordered pairs is defined

as a product of set A size and set B size:
|A|.|B|

www.cde.sk

●CROSS JOIN in SQL represents cartesian
product
○No filtering, each item combined with

each item from other table
●syntax:

○Explicit notation
SELECT *
FROM tab1
CROSS JOIN tab2;

○ Implicit notation
SELECT *
FROM tab1, tab2;

CROSS JOIN -
Cartesian product

Example – employees and
departments

●Tables contents

www.cde.sk

CROSS JOIN - Example

SELECT *
FROM employee
CROSS JOIN department;

www.cde.sk

●Most common JOIN
●Combination of tuples from two tables that

fulfil joining condition
○Usually tests equality of primary key and

foreign key (representing relationship)
●syntax:

○explicit
SELECT * FROM tab1 INNER JOIN
tab2 ON condition;

○ Implicit (CROSS JOIN + WHERE)
SELECT * FROM tab1, tab2 WHERE
condition;

INNER JOIN

www.cde.sk

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

SELECT *
FROM employee e, department d
WHERE e.departmentid=
 d.departmentid;

INNER JOIN - Example

www.cde.sk

●Joins tuples from two tables that have the
same values in columns with same name
(expects that the two tables have columns
with the same name)
○Not recommended to use (implicit joining

condition)
●syntax:
SELECT *
FROM tab1 NATURAL JOIN tab2;

NATURAL JOIN

www.cde.sk

SELECT * FROM employee e
NATURAL JOIN department d;

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

NATURAL JOIN - Príklad

www.cde.sk

SELECT * FROM employee e
NATURAL JOIN department d;

NATURAL JOIN - Example

www.cde.sk

●Explicit alternative for natural join
●Joins tables using same values in columns

with same names that have to be explicitly
specified (list of columns)

●example:
SELECT *
FROM tab1 INNER JOIN tab2
USING(departmentid);

INNER JOIN USING(attrs)

www.cde.sk

SELECT * FROM employee e
INNER JOIN department d
USING(departmentid);

SELECT * FROM employee e
INNER JOIN department d
ON e.departmentid=d.departmentid;

INNER JOIN USING - Example

www.cde.sk

●Used to include also those tuples that do
not fulfil joining condition (tuples without a
pairing tuple from other table)
○Left and right joins specify the table, from

which all the tuples should be included
●Types

○FULL OUTER JOIN
○Partial outer joins

■LEFT OUTER JOIN
■RIGHT OUTER JOIN

●Allows using NATURAL and USING as an
alternative to ON condition

OUTER JOIN

www.cde.sk

●Result always contains all tuples from the
table on the left side of join
○Each row from the left table is at least

once in the result
●Missing values for the pair tuple from right

table are replaced with NULL values
●syntax:

SELECT *
FROM tab1
LEFT OUTER JOIN tab2 ON cond;

LEFT (OUTER) JOIN

www.cde.sk

SELECT *
FROM employee e
LEFT OUTER JOIN department d
 ON e.DepartmentID =
 d.DepartmentID;

LEFT (OUTER) JOIN - Example

John does not
have a
department,
but we still
want him in the
result

www.cde.sk

SELECT *
FROM employee e
LEFT OUTER JOIN department d
 ON e.DepartmentID =
 d.DepartmentID;

SELECT *
FROM employee e
LEFT JOIN department d
 ON e.DepartmentID =
 d.DepartmentID;

LEFT (OUTER) JOIN -
alternative notation

www.cde.sk

●Result always contains all tuples from the
table on the right side of join
○Each row from the right table is at least

once in the result
●Missing values for the pair tuple from left

table are replaced with NULL values
●syntax:
SELECT * FROM tab1
RIGHT OUTER JOIN tab2 ON podm;

● In practice usually only left join is used (in
Oracle left join is more efficient, in SQLite
right join is not implemented at all)

RIGHT (OUTER) JOIN

www.cde.sk

SELECT *
FROM employee e
RIGHT JOIN department d
 ON e.DepartmentID =
 d.DepartmentID;

RIGHT (OUTER) JOIN -
Example

Marketing nemá
zamestnancov,ale
chceme vidieť
všetky oddelenia

www.cde.sk

●Result is a union of left and right outer join
○ Result contains all tuples from left table

and all tuples from right table, each at
least once

○ Those without a pair are complemented
with NULL values

●syntax:
SELECT *
FROM tab1
FULL OUTER JOIN tab2 ON cond;

FULL (OUTER) JOIN

www.cde.sk

SELECT *
FROM employee e
FULL OUTER JOIN department d
 ON e.DepartmentID =
 d.DepartmentID;

FULL (OUTER) JOIN - Example

www.cde.sk

●ON
○Defines joining condition
○Evaluated before (during) the joining

●WHERE
○Defines filtering condition
○Evaluated after the joining result is

created
●Selection of placement of a condition

(whether ON or WHERE) can affect
SELECT’s semantics

ON versus WHERE

www.cde.sk

● Joined departments with their employees
and filtered only those without an employee

SELECT *
FROM employee e
RIGHT JOIN department d
 ON e.DepartmentID =
 d.DepartmentID
WHERE e.lastName IS NULL;

ON versus WHERE - Example

www.cde.sk

● The null test is donu during the joining (no
pair has the lastname with null value)

SELECT *
FROM employee e
RIGHT JOIN department d
 ON e.DepartmentID =
 d.DepartmentID

 AND e.lastName IS NULL;

ON versus WHERE - Example

www.cde.sk

●Order of tables in join can affect
evaluation speed

●Left and right outer join are not
commutative
○(A left join B) ≠ (B left join A)

●All outer joins are not associative
○(A left join B) left join C

≠
A left join (B left join C)

Joining properties

www.cde.sk

Questions?

